

Features:

- ♦ 4 Parallel lanes design
- ♦ Up to 11.2Gbps per channel bandwidth
- ♦ MPO optical connector
- ♦ Compliant with 40G Ethernet IEEE802.3ba and 40GBASE-LR4 Standard
- ♦ QSFP MSA compliant
- ♦ Up to 2 km transmission
- ♦ Compliant with QDR/DDR Infiniband

data rates

- ♦ Single +3.3V power supply operating
- ♦ Built-in digital diagnostic functions
- ♦ Temperature range 0° C to 70° C
- ♦ RoHS Compliant

Applications:

- ♦ InfinibandQDRandDDR interconnects
- ♦ Datacenters
- ♦ Switches and Routers
- ♦ 40G BASE-LR4 Ethernet Links

Description:

The OPQC02-4 is a transceiver module designed for 2Km optical communication applications. The design is compliant to 40GBASE-LR4 of the IEEE P802.3ba standard. It provides increased port density and total system cost savings. The QSFP+ full-duplex optical module offers 4 independent transmit and receive channels, each capable of 10Gb/s operation for an aggregate data rate of 40Gb/s on 10km of single mode fiber.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

The module operates from a single +3.3V power supply and LVCMOS/LVTTL global control signals such as Module Present, Reset, Interrupt and Low Power Mode are available with the modules. A 2-wire serial interface is available to send and receive more complex control signals and to obtain digital diagnostic information. Individual channels can be addressed and unused channels can be shut down for maximum design flexibility.

The OPQC02-4 is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module offers very high functionality and feature integration, accessible via a two-wire serial interface.

Parameter	Symbol	Min.	Typical	Max.	Unit		
Storage Temperature	Ts	-40		+85	°C		
Supply Voltage	V _{CC} T, R	-0.3		3.6	V		
Relative Humidity	RH	0		85	%		

• Absolute Maximum Ratings

Shenzhen Opway Communication Co., Ltd.

Recommended Operating Environment

Parameter	Symbol	Min.	Typical	Max.	Unit
Case operating Temperature	T _C	0		+70	°C
Supply Voltage	V _{CCT, R}	+3.13	3.3	+3.47	V
Supply Current	I _{CC}			757	mA
Power Dissipation	PD			2.5	W

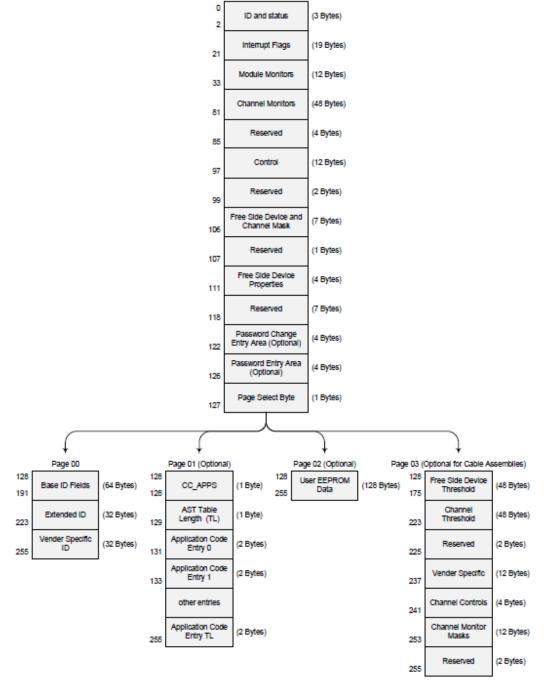
• Electrical Characteristics

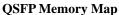
Parameter	Symbol	Min	Тур	Max	Unit	Note
Data Rate per Channel		-	10.3125	11.2	Gbps	
Power Consumption		-	1.7	2.5	W	
Supply Current	Icc	-	515	757	mA	
Control I/O Voltage-High	VIH	2.0		Vcc	V	
Control I/O Voltage-Low	VIL	0		0.7	V	
Transmitter						
Single Ended Output Voltage Tolerance		0.3		4	V	
Common mode Voltage Tolerance		15			mV	
Transmit Input Diff Voltage	VI	300		1100	mV	
Transmit Input Diff Impedance	Zin	90	100	110	Ω	
Receiver						
Single Ended Output Voltage Tolerance		0.3		4	V	
Rx Output Diff Voltage	Vo	500		800	mV	
Transmit Output Diff Impedance	Zout	90	100	110	Ω	

• Optical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Ref.	
Transmitter							
Center Wavelength	λC	1270	1310	1350	nm		
Side-mode Suppression Ratio	SMSR	30	-	-	dB		
Average Launch Power, each Lane	Pav	-5.5	-	2.3	dBm		
Optical Modulation Amplitude, each Lane	Poma	-4.5		3.5	dBm		
Difference in Launch Power between any two Lanes (OMA)		-	-	5.0	dB		
Launch Power in OMA minus Transmitter and Dispersion Penalty (TDP), each Lane		-9.7	-		dBm		
Extinction Ratio	ER	3.5	-	-	dB		
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}					
Optical Return Loss Tolerance	12 0		dB				
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm		

Shenzhen Opway Communication Co., Ltd.




Relative Intensity Noise	Rin			-128	dB/HZ	
Transmitter Reflectance		-	-	-12	dB	
Receiver						
Damage Threshold	THd	3.0			dBm	
Receiver Reflectance	Rrx			-12	dB	
Receiver Sensitivity(OMA), each Lane	SR	-	-	-11.5	dBm	
Difference in Receive Power between any two Lanes (OMA)				5.0	dB	
Receive Electrical 3 dB upper Cutoff Frequency, each Lane				12.0	GHz	
LOS De-Assert	LOSD			-15	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis	LOS _H	0.5			dB	

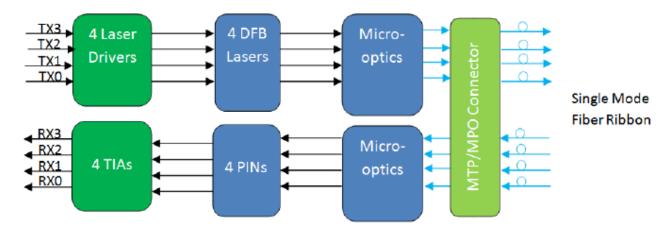
• Diagnostic Monitoring Interface

Digital diagnostics monitoring function is available on all QSFP+ LR4. A 2-wire serial interface provides user to contact with module. The structure of the memory is shown in flowing. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, such as Interrupt Flags and Monitors. Less time critical time entries, such as serial ID information and threshold settings, are available with the Page Select function. The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a one-time-read for all data related to an interrupt situation. After an interrupt, IntL has been asserted, the host can read out the flag field to determine the affected channel and type of flag.

Serial ID: Data Fields

Address	Size (Bytes)	Name	Description of Base ID Field
Base ID f	ields		
128	1	Identifier	Identifier Type of serial Module
129	1	Ext. Identifier	Extended Identifier of Serial Module
130	1	Connector	Code for connector type
131-138	8	Specification compliance	Code for electronic compatibility or optical compatibility
139	1	Encoding	Code for serial encoding algorithm

Shenzhen Opway Communication Co., Ltd.


140	1	BR, nominal	Nominal bit rate, units of 100 MBits/s		
141	1	Extended Rate select Compliance	Tags for extended rate select compliance		
142	1	Length(SMF)	Link length supported for SMF fiber in km		
143	1	Length(OM3 50um)	Link length supported for EBW 50/125um fiber (OM3), units of 2m		
144	1	Length(OM2 50um)	Link length supported for 50/125um fiber (OM2), units of 1m		
145	1	Length(OM1 62.5 um)	Link length supported for 62.5/125um fiber (OM1), units of 1m		
146	1	Length (Copper)	Link length of copper or active cable, units of 1m		
147	1	Device tech	Device technology		
148-163	16	Vendor name	QSFP+ vendor name(ASCII)		
164	1	Extended Module	Extended Module codes for InfiniBand		
165-167	3	Vendor OUI	QSFP+ vendor IEEE company ID		
168-183	16	Vendor PN	Part number provided by QSFP+ vendor(ASCII)		
184-185	2	Vendor rev	Revision level for part number provided by vendor (ASCII)		
186-187	2	Wave length or Copper Cable Attenuation	Nominal laser wavelength (wavelength=value/20 in nm)		
188-189	2	Wavelength tolerance	Guaranteed range of laser wavelength(+/- value) from nominal wavelength. (wavelength Tol.=value/200 in nm)		
190	1	Max case temp.	Maximum case temperature in degrees C		
191	1	CC_BASE	Check code for base ID fields (addresses 128-190)		
Extended	ID fields				
192-195	4	Options	Rate Select, TX Disable, TX Fault, LOS		
196-211	16	Vendor SN	Serial number provided by vendor (ASCII)		
212-219	8	Date Code	Vendor's manufacturing date code		
220	1	Diagnostic Monitoring Type	Indicates which types of diagnostic monitoring are implemented (if any) in the Module. Bit 1,0 Reserved		
221	1	Enhanced Options	Indicates which optional enhanced features are implemented in the transceiver.		
222	1	Reserved			
223	1	CC_EXT	Check code for the Extended ID Fields (addresses 192-222)		
Vendor S	Vendor Specific ID Fields				
224-255	32		Vendor Specific EEPROM		

Page02 is User EEPROM and its format decided by user.

The detail description of low memory and page00.page03 upper memory please see SFF-8436 document.

• Transceiver Block Diagram

Transceiver Block Diagram

• Pin Assignment

38 GND GND 1 37 TX1n 2 3 TX2n TX1p 36 TX2p 35 GND 4 5 6 GND 34 TX3n TX4n 33 TX3p TX4p 32 GND 7 8 GND 31 LPMode Card Edge ModSelL 30 Vcc1 ResetL 9 29 VccTx VccRx 10 28 IntL SCL 11 27 26 ModPrsL SDA 12 GND GND 13 25 24 23 RX4p 14 RX3p RX4n RX3n 15 GND 16 GND 22 21 RX2p RX1p 17 RX2n RX1n 18 20 GND GND 19

Top Side Viewed from Top

Bottom Side Viewed from Bottom

Diagram of Host Board Connector Block Pin Numbers and Name

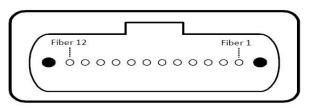
• Pin Description

Pin	Logic	Symbol	Name/Description	Ref.
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Output	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Output	
7		GND	Ground	1
8	LVTTL-I	ModSelL	Module Select	

Shenzhen Opway Communication Co., Ltd.

9	LVTTL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
10	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	2
11	LVCMOS-I/O	SDA SDA	2-Wire Serial Interface Data	
12		GND	Ground	1
13	CML-O			1
		Rx3p	Receiver Inverted Data Output	
15	CML-O	Rx3n	Receiver Non-Inverted Data Output	1
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Inverted Data Output	
18	CML-O	Rx1n	Receiver Non-Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power Supply Transmitter	2
30		Vcc1	+3.3V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Tx3p	Transmitter Inverted Data Output	
34	CML-I	Tx3n	Transmitter Non-Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Inverted Data Output	
37	CML-I	Tx1n	Transmitter Non-Inverted Data Output	
38		GND	Ground	1

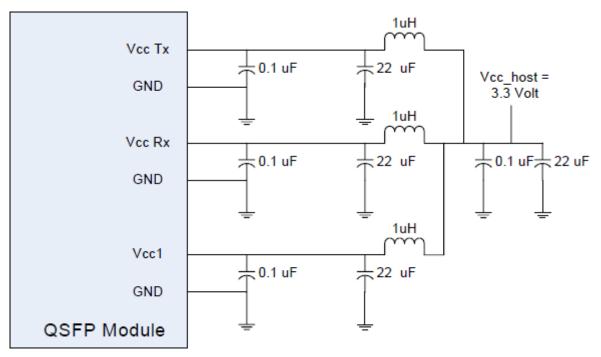
Notes:


- 1. GND is the symbol for single and supply(power) common for QSFP modules, All are common within the QSFP module and all module voltages are referenced to this potential otherwise noted. Connect these directly to the host board signal common ground plane. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 2. VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. VccRx, Vcc1 and VccTx may be internally connected within the QSFP transceiver module in any combination. The connector pins are each rated for maximum current of 500mA.

Shenzhen Opway Communication Co., Ltd.

• Optical Interface Lanes and Assignment

Below figure shows the orientation of the multi-mode fiber facets of the optical connector

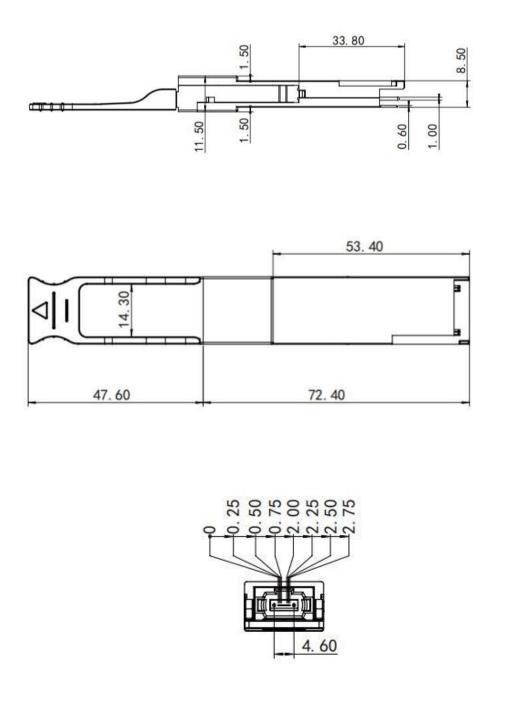


Outside View of the QSFP Module MPO

Fiber No.	Lane Assignment
1	RX0
2	RX1
3	RX2
4	RX3
5	Not Used
6	Not Used
7	Not Used
8	Not Used
9	TX3
10	TX2
11	TX1
12	TX0

Lane Assignment Table

• Recommended Circuit



Recommended Host Board Power Supply Filtering

Shenzhen Opway Communication Co., Ltd.

• Mechanical Dimensions

OPWAY reserves the right to make changes to the products or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such products or information. Published by Shenzhen OPWAY Communication Co., Ltd. Copyright © OPWAY All Rights Reserved

Shenzhen Opway Communication Co., Ltd.